首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1164篇
  免费   84篇
  国内免费   1篇
  2023年   5篇
  2021年   19篇
  2020年   9篇
  2019年   15篇
  2018年   37篇
  2017年   24篇
  2016年   38篇
  2015年   60篇
  2014年   74篇
  2013年   83篇
  2012年   106篇
  2011年   78篇
  2010年   62篇
  2009年   53篇
  2008年   96篇
  2007年   79篇
  2006年   56篇
  2005年   55篇
  2004年   58篇
  2003年   42篇
  2002年   46篇
  2001年   23篇
  2000年   32篇
  1999年   20篇
  1998年   10篇
  1997年   10篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1980年   2篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
  1958年   2篇
  1957年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有1249条查询结果,搜索用时 437 毫秒
21.
Ascorbic acid (AA) exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3-PO) on the viability of three non-small cell lung cancer (NSCLC) cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS) levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose) polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with glycolysis inhibitors may be a promising therapy for the treatment of NSCLC.  相似文献   
22.
23.
Triple-negative breast cancer (TNBC) is associated with a high mortality rate, which is related to the insufficient number of appropriate biomarkers and targets. Therefore, there is an urgent need to discover appropriate biomarkers and targets for TNBC. SARNP (Hcc-1 and CIP29) is highly expressed in several cancers. It binds to UAP56, an RNA helicase component of the TREX complex in messenger RNA (mRNA) splicing and export. However, the role of SARNP in mRNA splicing and export and in the progression of breast cancer, especially of TNBC, remains unknown. Therefore, we examined the role of SARNP in mRNA splicing and export and progression of TNBC. We confirmed that SARNP binds to UAP56 and Aly and that SARNP overexpression enhances mRNA splicing, whereas its knockdown suppressed mRNA export. The SARNP overexpression induced the proliferation of MCF7 cells, whereas its knockdown induced E-cadherin expression and downregulated vimentin and N-cadherin expressions in SK-BR-3 and MDA-MB-231 cells. SARNP downregulates E-cadherin expression by interaction with pinin. Mice injected with MDA-MB-231shSARNP cells exhibited a significant reduction in tumor growth and lung metastasis compared with those injected with MDA-MB-231shCon cells in vivo. These findings suggested that SARNP is involved in mRNA splicing and export. SARNP maintains mesenchymal phenotype by escaping from inhibitory interaction with pinin leading to the downregulation of E-cadherin expression.  相似文献   
24.
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-2183.54, Tyr-224IC2, Asp-3386.30, Arg-3406.32, Leu-3416.33, and Thr-3446.36, as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.  相似文献   
25.
One of the most widely accepted ideas related to the evolutionary rates of proteins is that functionally important residues or regions evolve slower than other regions, a reasonable outcome of which should be a slower evolutionary rate of the proteins with a higher density of functionally important sites. Oddly, the role of functional importance, mainly measured by essentiality, in determining evolutionary rate has been challenged in recent studies. Several variables other than protein essentiality, such as expression level, gene compactness, protein–protein interactions, etc., have been suggested to affect protein evolutionary rate. In the present review, we try to refine the concept of functional importance of a gene, and consider three factors—functional importance, expression level, and gene compactness, as independent determinants of evolutionary rate of a protein, based not only on their known correlation with evolutionary rate but also on a reasonable mechanistic model. We suggest a framework based on these mechanistic models to correctly interpret the correlations between evolutionary rates and the various variables as well as the interrelationships among the variables.  相似文献   
26.
27.
Recent studies have demonstrated that microglial hyperactivation-mediated neuroinflammation is involved in the pathogenesis of several neurodegenerative diseases. Thus, inhibiting microglial production of the neurotoxic mediator tumor necrosis factor-α (TNF-α) is considered a promising strategy to protect against neurodegeneration. Here, we investigated the inhibitory effect of licorice-derived dehydroglyasperin C (DGC) on lipopolysaccharide (LPS)-induced TNF-α production and inflammation-mediated neurodegeneration. We found that DGC pre-treatment attenuated TNF-α production in response to LPS stimulation of BV-2 microglia. DGC pre-treatment attenuated LPS-induced inhibitor of κB-α (IκB-α) and p65 phosphorylation and decreased the DNA binding activity of nuclear factor-κB (NF-κB). DGC pre-treatment also inhibited LPS-mediated phosphorylation of p38 mitogen-activated protein kinases (MAPKs) and extracellular signal-regulated kinase (ERK). Interestingly, DGC treatment of BV-2 microglia significantly increased MAPK phosphatase 1 (MKP-1) mRNA and protein expression, which is a phosphatase of p38 MAPK and ERK, suggesting that the DGC-mediated increase in MKP-1 expression might inhibit LPS-induced MAPKs and NF-κB activation and further TNF-α production. We also found that LPS-mediated microglial neurotoxicity can be attenuated by DGC. The addition of conditioned media (CM) from DGC- and LPS-treated microglia to neurons helped maintain healthy cell body and neurite morphology and increased the number of microtubule-associated protein 2-positive cells and the level of synaptophysin compared to treatment with CM from LPS-treated microglia. Taken together, these data suggest that DGC isolated from licorice may inhibit microglia hyperactivation by increasing MKP-1 expression and acting as a potent anti-neurodegenerative agent.  相似文献   
28.
Erythorbyl laurate was continuously synthesized by esterification in a packed‐bed enzyme reactor with immobilized lipase from Candida antarctica. Response surface methodology based on a five‐level three‐factor central composite design was adopted to optimize conditions for the enzymatic esterification. The reaction variables, such as reaction temperature (10–70°C), substrate molar ratio ([lauric acid]/[erythorbic acid], 5–15), and residence time (8–40 min) were evaluated and their optimum conditions were found to be 56.2°C, 14.3, and 24.2 min, respectively. Under the optimum conditions, the molar conversion yield was 83.4%, which was not significantly different (P < 0.05) from the value predicted (84.4%). Especially, continuous water removal by adsorption on an ion‐exchange resin in a packed‐bed enzyme reactor improved operational stability, resulting in prolongation of half‐life (2.02 times longer compared to the control without water‐removal system). Furthermore, in the case of batch‐type reactor, it exhibited significant increase in initial velocity of molar conversion from 1.58% to 2.04%/min. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:882–889, 2013  相似文献   
29.
30.
This study presents an evaluation of the role that cartilage fibre ‘split line’ orientation plays in informing femoral cartilage stress patterns. A two-stage model is presented consisting of a whole knee joint coupled to a tissue-level cartilage model for computational efficiency. The whole joint model may be easily customised to any MRI or CT geometry using free-form deformation. Three ‘split line’ patterns (medial–lateral, anterior–posterior and random) were implemented in a finite element model with constitutive properties referring to this ‘split line’ orientation as a finite element fibre field. The medial–lateral orientation was similar to anatomy and was derived from imaging studies. Model predictions showed that ‘split lines’ are formed along the line of maximum principal strains and may have a biomechanical role of protecting the cartilage by limiting the cartilage deformation to the area of higher cartilage thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号